

Abstract—This paper proposes a model for caching database

data in mobile ad-hoc networks through caching the queries and
their responses. The approach makes a distinction between the
queries and their responses and caches them on separate mobile
nodes. This method is driven by the fact that queries do not
become invalid unless when the design of the database entities
changes while data changes depending on the application that
feeds information into the database. The architecture we use is
hierarchical and employs three types of designated nodes: a
Query Directory (QD), Service Manager (SM), and Caching
Node (CN). The one or more QDs are responsible for caching the
queries and are assigned and supervised by the SM that also
oversees the mobility activities and the availability of nodes in the
network and makes “managerial” decisions accordingly,
including appointing backup nodes. With this model, any node
that joins the ad hoc network will either contribute services to
other nodes (willingness to become an SM, a QD, or a CN) or
consume services offered by other nodes. This model attempts to
coordinate the query executing and query caching mechanisms in
a seamless manner while maintaining minimal communication
among nodes. We present preliminary results of a model that was
simulated using the NS-2 software and show the viability of the
proposed approach.

Index Terms—Ad Hoc Networks, Database Caching, Mobile
networks, MANETs.

I. INTRODUCTION
OBILE ad hoc networks (MANETs) are making the focus
of current research. In this type of networks, each

mobile node’s transmitter has a limited range and mobile
nodes communicate using multi-hop wireless links as shown
in Fig. 1. Nodes are capable of moving actively and can be
connected dynamically as each node can act as a router [1].
Most previous researches have been focusing on the
development of dynamic routing protocols that make efficient
use of bandwidth and computational overhead [2]. Although
routing is an important issue, the ultimate goal of a MANET is

H. Artail is with the Electrical and Computer Engineering department,

American university of Beirut, Beirut, Lebanon (email: ha27@aub.edu.lb)
H. Safa is with the Department of Computer Science, American University

of Beirut, Beirut, Lebanon (e-mail: haidar.safa@ aub.edu.lb) and with the
Mobile Computing and Networking Research Laboratory (LARIM), Ecole
Polytechnique de Montreal, Montreal, Canada H3T1J4 (e-mail: haidar.safa@
polymtl.ca)

S. Pierre is with the Mobile Computing and Networking Research
Laboratory (LARIM), Department of Computer Engineering, Ecole
Polytechnique de Montreal, Montreal, Canada H3T1J4 (e-mail:
samuel.pierre@polymtl.ca).

to provide mobile nodes with access to services, but for any
service to be successful it needs to be accessible from most
mobile devices.

In MANETs accessing services and data over the network
can be very slow and hence, caching frequently accessed data
is an effective technique for improving performance. While
caching data on the device is useful for the device itself, this
mechanism does not provide a consistent framework for
allowing all other devices in the network to benefit from this
data. Therefore, devising an effective caching strategy for the
whole MANET is of special importance since it allows for
improving the performance of the network as a whole.

The objective of this paper is to propose a new model for
caching database data in MANETs through caching the
queries and their responses on separate nodes. This model
attempts to allow the ad hoc network to function with minimal
communications with the database so as to keep the network
up and running even with database disconnections.

II. RELATED WORK
Many papers have proposed or dealt with models that

involve caching or replication as a way to make services more
accessible to mobile devices [3],[5]-[15].

A. Cooperative cache-based data access in ad hoc network
A cache-based data access framework was proposed in [3],

that describes how mobile nodes can work as request-

Database Caching in MANETs Based on
Separation of Queries and Responses

Hassan Artail, Haidar Safa, and Samuel Pierre

M

Fig. 1. Wireless nodes routing a request to the base station.

0-7803-9182-9/05/$20.00 ©2005 IEEE. - 237 -

forwarding routers. Three different caching techniques were
proposed: CachePath, CacheData, and HybridCache.

In CachePath, a node need not record the path information
of all passing data; rather, it only records the data path when it
is closer to the caching node than the data source. An example
is shown in Fig. 2. When node N11 forwards data di to the
destination node N1 along the path N5 – N4 – N3, node N4
and node N5 will not cache di’s path information because they
are closer to the data source than the caching node N1.

In CacheData, the router node caches the data instead of the
path when it finds that the data is frequently accessed. In Fig.
2, if both node N6 and node N7 request data di through node
N5, the latter might think that di is popular and cache it
locally. N5 can then serve N4’s future requests directly.
However, if node N3 forwards several requests for di to node
N11, the nodes along the path—N3, N4, and N5— might want
to cache di as a frequently accessed item. Consequently,
they’ll waste a large amount of cache space if they all cache
di. To avoid this, a node does not cache the data if all requests
for the data are from the same node.

In HybridCache, a node caches the data or path based on
parameters that include the data size and data time-to-live
(TTL). If data size is small, CacheData is optimal because the
data item di only needs a small part of the available cache.
Otherwise, CachePath is preferred because it saves cache
space. If TTL is small, then CacheData is preferable since di
might soon become invalid. For a large TTL value, CachePath
is acceptable. Caching a data path only requires a small
overhead and hence, in HybridCache, when a node caches di
using CacheData, it also caches di’s path. Later, if the cached
di becomes invalid, the validation algorithm can remove di but
keeps the path.

With HybridCache, router nodes help other mobile nodes to
get the requested data quickly. A mobile node doesn’t know
whether the data source or some other nodes serve its request.
If multiple data sources exist, or if the mobile node doesn’t
know where the data source is, HybridCache might not be a
good option. One possible solution may be the proactive
cooperative caching, in which the requesting node actively
searches for data from other nodes and the data search can go
through multiple hops. Indeed, in proactive cooperative
caching, the requesting node broadcasts a request to its

neighbor nodes. If a node receiving the request has the data in
its local cache, it sends an acknowledgment (ACK) to the
requesting node; otherwise, it forwards the request to its
neighbors. In this way, a request is flooded to other nodes and
eventually acknowledged by the data source or a node with
the cached copy. Flooding can create problems such as
redundancy, contention, and collision—collectively referred
to as the broadcast storm problem [4].

B. Replica allocation methods in ad hoc network
Three replica allocation methods for improving data

accessibility in ad hoc networks were proposed in [5] and [6].
They all assume that each mobile host creates replicas of the
data items, and maintains the replicas in its memory space.
When a mobile host issues an access request for a data item di,
the request is successful in either case: 1) the requesting host
itself holds the original/replica of di or, 2) at least one mobile
host which is connected to the requesting host with a one-
hop/multi-hop link holds the original/replica. Thus, first, the
requesting host checks whether it holds the original/replica of
the target di. If it does, the request succeeds on the spot,
otherwise it broadcasts the request for the target di. Then, if it
receives a reply from another host which holds the
original/replica of the target di, the request is also successful.
Otherwise, the request fails.

The three replica allocation methods differ in the emphasis
put on access frequency and network topology. They are:
Static Access Frequency method (SAF), Dynamic Access
Frequency and Neighborhood method (DAFN), and Dynamic
Connectivity based Grouping method (DCG). In the SAF
method, only the access frequency to each data item is taken
into account while in the DAFN method, the access frequency
to each di and the neighborhood among mobile hosts are taken
into account. In the DCG method, the access frequency to
each data item and the whole network topology are taken into
account i.e. stable groups of mobile hosts are created, and
replicas are shared in each group. The technique in [5]
assumes that data items are periodically updated, which is not
the case of [6].

The replica allocation methods replicate the data item on
the requesting node. Using SAF, the replication redundancy
may become enormous if a considerable number of mobile
nodes frequently access the same data. Using DAFN, the
redundancy is eliminated among neighbors. However, this
elimination is taking place after the occurrence of redundancy.
Consequently, it will consume a considerable portion of the
bandwidth.

C. Cache management for mobile databases
In [7] a mobile caching mechanism for a mobile

environment is described. It investigates three levels of
granularity of caching a database item namely, attribute
caching, object caching, and hybrid caching. Intuitively, in
attribute caching frequently accessed attributes of database
objects are cached in a client’s local storage. In object
caching, the objects themselves are cached. Finally, in hybrid

Fig. 2. An Ad Hoc network used to demonstrate the caching techniques.

caching, only frequently accessed attributes of those
frequently accessed database objects are cached. This ensures
that the cached attributes of the cached objects will have a
high likelihood to be accessed in the future. This mechanism
was implemented using a cache table in each client, to identify
if a database item (attribute or object) is cached in local
storage. Also, if a client is connected to a server, the client is
able to retrieve the cached items from the local storage and the
un-cached items from the server. Otherwise the client retrieves
only the cached items. The mechanism suffers from some
drawbacks since it assumes that each mobile client only
communicates with one server while in real applications
mobile client might requests items from multiple servers.

D. Caching web services with load balancing
In [8] caching of web services is organized as a service

itself. In order to reduce cellular communication, each cached
service has a single proxy cache within each ad-hoc network
in which it is being used. The node that caches the service is
referred to as a local proxy. As stated in [9], the two main
issues in any caching system are proxy placement and proxy
lookup. The former deals with deciding which nodes should
act as proxies for which services and the latter solves the issue
of how to find a proxy and how to route to it. The assignment
of proxies in the network is subject to fairness criteria that
mostly concern distributing the load among the devices. When
a device needs to access a service, it first tries to access the
proxy it knows about from gossiping and then by referral.

Choosing the right proxy can have a dramatic impact on the
performance of the system. Proxies need to be updated
continuously to make up for topological changes and
partitioning and merges of the MANET caused by mobility.

E. Other issues with caching
Caching mechanisms in conventional client-server

environments are usually page-based, primarily because the
overhead for transmitting one item or a page is almost the
same. Page-based caching mechanisms require a high degree
of locality among the items within a page to be effective. In
practice, database items requested by different mobile clients
via dedicated channels are different. A physical organization
that favors the locality exhibited by one client might result in
poor locality for another. Database items within a page at a
database server thus barely exhibit any degree of locality.
Furthermore, mobile clients are powered by short-life batteries
and caching a page will result in wasting energy when the
degree of locality is low. The overhead of transmitting a page
over a low bandwidth wireless channel would be too
expensive to be justified. It is, therefore, necessary to consider
caching at a smaller granularity in this context.

III. PROPOSED ARCHITECTURE
Our aim is to increase the ability of mobile devices to have

access to database data given their highly dynamic
characteristics, such as mobility, power limitations, and
intermittent availability. Our proposal calls for building a

hierarchical architecture for handling the distribution of data,
for providing services to the requesting nodes, and for
managing the roles of the nodes.

Database access is normally handled using Structured
Query Language (SQL) and as such, we can either cache the
sent SQL queries (or statements) along with the corresponding
return data, or replicate the database data among the mobile
nodes. With the latter approach however, the job of
interpreting and processing SQL would have to be delegated
to one or more nodes, which may be taxing especially if we
need to implement the full capability of a database server.
Even if one resorts to a light version, replicating the raw data
among the mobile nodes brings with it a lot of issues. Among
those is the fact that in order to answer certain queries, data
may need to be collected across nodes, which could add
delays and consume additional power. Further, certain
strategies would have to be adopted for deciding how to break
the data among the nodes in order to increase the probability
of answering most queries by contacting a single node.

A. Components of the Architecture
We base our caching model on caching the SQL statements

that correspond to queries and their return data. In effect, our
proposed architecture makes query discovery the underlying
service that enables access to cached database data. The
entities in the architecture are the Service Manager (SM) and
its backup (BSM), the Query Directories (QDs) and their
respective backups (BQDs), and the mobile nodes that cache
the query responses, which we refer to as the Caching Nodes
(CNs). The CNs only store the query responses, i.e., the
database data, and associate them with the queries that caused
them to be returned by the database server. Similarly, the QDs
store the queries without the data and also associate these
queries with the CNs that hold the corresponding data.
Finally, the SM keeps track of which nodes have the role of
Query Directories and backup Query Directories and makes
assignments and reassignments based on availability and
fairness criteria.

The SM is elected based on capabilities, availability and
other factors whenever the network is formed or when its
structure changes. The SM elects a backup SM (BSM), with
which it will synchronize every interval of time. Upon
demand, the SM will assign the QDs and CNs, and directly
assigns the BQDs. First, the SM starts with assigning the first
QD, which caches the queries and maintains corresponding
pointers to the nodes that submitted these queries. These
nodes become the CNs while the pointers form entries in hash
tables that link the queries to the corresponding CNs. Each
QD will synchronize its entries (cached queries and hash table
entries) with its BQD every specified time interval.

To provide an overview of the roles of the basic
components of the architecture, we provide a physical view of
the architecture in Fig. 3 and a conceptual view in Fig. 4.

B. Query and Result Caching Strategy
Caching data (numerical, textual, or mixed data) on the

Caching Nodes requires the reservation of storage space,
which is limited on mobile devices and hence, we need to
make every attempt to save space and be able to increase the
collective amount of cached data in the network. Many
strategies have been discussed in the literature that we can
benefit from. This includes duplication management
techniques (also related to node clustering) and compression
algorithms.

Caching the queries themselves in the Query Directories
requires special attention as these can be lengthy and storing
them as normal text is costly. Instead we devise a simple
algorithm that builds on the limited set of SQL keywords and
on the usually small number of database tables and associated
fields (columns). Actually, the only SQL statement that
concerns us is SELECT because the others deal with data
modification. Although this is relevant, we elect to treat this
subject in another paper and focus instead on the design of the
proposed architecture and on studying its performance.

C. Updating the Mobile Network
The Service Manager (SM) keeps track of QDs through

periodic multicasts that it issues to the QDs, which it knows
about (since it assigned them these roles). Information about
the available QD nodes is then broadcasted across the mobile
network so all mobile nodes know the number of QDs and
where to send their queries to get the data (if such queries are
cached). Forwarding pointers can be used to link QDs.

When submitting a query, the requesting Mobile Node
(MN) will generate a random integer number between 1 and
the number of QDs and then send its query to the
corresponding QD in the list of QDs. If this QD is far, i.e. not
in a one hop range, the query will be routed to it using the Ad
hoc On-Demand Distance Vector Routing (AODV), used in
mobile Ad hoc networks.

If the requested query is not available in the chosen QD, the
latter will send the query with the MN’s identifier (IP for
example) to the next QD in the list. Also, if the query was not
available, this next QD will send the query with the MN’s
identifier to the following QD, so on until the last QD in the
circular list is reached. If the query was found on a QD, the
latter will check its hashing table to know which CN holds the
output of this query. Knowing the requester MN’s identifier,
the CN will send the previously cached data to the requester.

To cover for the case where no QD exists that holds the
query (equivalent to saying that the sought data is not cached),
the non-full QD in the list will save this query and send it to
the database to get the results. As implied from above, each
requesting node becomes a CN once it obtains the results of
its query and will thus participate in providing caching
services to the network. If its designated storage space ever
becomes full of cached results, it may use one of the

Active Query
Directory

Standby
Query
Directory

Standby
Query
Directory

Standby
 Query
 Directory Active Query

Directory

Active Query
Directory

Active Service
Manager

Standby Service
Manager

Database Server

Database Server

Database Server

Caching
Nodes

Caching Nodes

Caching
Nodes

Fig. 3. Physical overview of architecture.

 Service Managers

Query Directories

Caching Nodes

Database
Server

Fig. 4. Conceptual overview of architecture.

replacement algorithms (e.g., least recently used or least
frequently used) to store the new result at the expense of an
old one. This however necessitates informing the QD that
holds the corresponding query to invalidate this query, hence
the need for a hash table on each CN to link to the
corresponding QDs. When serving other nodes, the CN
forwards the data item to the requester using its identifier that
it retrieves from the request packet it gets from the QD.

Initially, the system starts with a single QD that caches
queries. When this QD is filled beyond a given threshold, it
informs the SM, which will assign an additional QD. When
this new QD becomes filled, another node will join the list of
QDs that are linked in a circular manner (see Fig. 5). The
number of QDs will increase until some kind of steady state
level is reached (i.e., increasingly less queries are not found in
the cache). As implied, at any point in time, there is one QD
that is available to cache non-cached queries and we refer to it
as the non-full QD (NF-QD). If the submitted query was not
found in the QDs, it is the NF-QD that goes to the database to
fetch the results, adds the query to its local cache, updates its
hash table, and forwards the result to the requesting node.

Note that with the above strategy, the Service Manager does

not have to issue new updates to the network. That is, the
nodes in the network do not need to be updated whenever the
cache of the NF-QD is updated because they follow a chain of
pointers between the QDs during the search procedure. When
no QDs are known to hold the query, the last QD in the
circular list informs the NF-QD about the need to cache this
query and submit it to the database in order to obtain the
results. A requesting mobile node will send its query to the
one of the QDs, chosen randomly for the purpose of
distributing the load among the QDs. If this QD has the query
cached, it fetches the results from the corresponding CN and
return them to the node. Otherwise it forwards the query to the
next QD in the chain (the NF-QD could be anywhere in this
chain). If the last QD in the chain is reached and the query is
not cached, the last QD informs the NF-QD, which in turns
gets the data from the database and updates its cache and hash
table, and sends the results to the requesting node (as
explained above).

As mentioned above, certain cached query responses may
be replaced by new ones in the CNs, thus causing the
corresponding queries to become invalid and consequently
creating free space in possibly filled QDs. For simplicity

however and because this situation is not expected to occur
frequently (i.e., CNs becoming filled with cached responses),
we do not take advantage of this freed space and instead keep
on using the NF-QD to cache non-cached queries. Unlike this
scenario, when updated data in the database causes cached
responses in the CNs to become invalid, the cached queries in
the QDs do not get affected.

D. Backups
Since the content of the QDs does not change under normal

conditions, it would not be a burden bandwidth-wise to
institute a cache replication strategy for the QDs. For each
QD, we propose that the first faraway node (>H hops) making
a request to use this QD is chosen as its BQD (a node can be
both a CN and QD). We chose a faraway node to act as a
backup node for the mere observation that if a node went
down because of signal loss, a close node will likely
experience the same problem and a faraway node will be a
better choice to act as backup with a less probability to go
offline simultaneously.

As previously mentioned, the QDs will synchronize with
their backup nodes every specified amount of time. When a
node, with a specified function, for example a QD, goes
offline, its respective backup (the BQD) will take charge and
become an active node (the QD). Then it will ask the SM to
assign a backup node for it (a BQD), to maintain the
redundancy and to protect against data loss.

E. Consistency of Query Responses
While the content of the cache in the QDs is not expected to

change considerably within a given period of time, the data
cached in the CNs may change depending on the nature of the
data in the database and the underlying application. Dealing
with issues related to cache data consistency is not new and
has been discussed extensively in the literature (known as
cache validation). For the proposed architecture, keeping the
query responses consistent with the database is challenging
due to their association with queries. We will not discuss this
topic any further as it is the subject of another paper.

IV. SIMULATIONS AND RESULTS
To simulate the proposed architecture, we used the NS-2

software, which is a network simulator that is widely used for
research [16]. It simulates various IP networks and
implements many network protocols such as TCP, UDP, and
FTP. It also implements multicasting and some MAC layer
protocols to simulate LANs and can be used to simulate large
networks. An important feature in NS-2 is the wireless model,
which simplifies the simulation process for the proposed
architecture. The simulations were built using Tcl scripts and
C++ programs while the results that we present below were
obtained from the log-trace files that the simulator generates.
In this section, we will show the simulation results of our
architecture and compare the results to no caching where all
the queries are sent to the database.

Single QD in
the network

Caching
new queries

Non full
QD

Caching
new queries

Caching
new queries

Full
QD

Non full
QD

Full
QD

Full
QD

Fig. 5. Formation of Query Directories.

A. Simulation Setup
For the simulations, we chose an 800m×800m terrain and

placed in it twenty five nodes that use the AODV routing
protocol. The nodes issue random requests at intervals of 2
seconds over a period of 1000 seconds. As for mobility, we
used CMU’s node movement generator setdest to create
random waypoint [17] node movements for the 25 mobile
nodes. The Random Waypoint model is mainly used for ad-
hoc network simulation. Fig. 6 shows the locations of the
nodes at a particular instant of time.

For the simulations, we made some simplifications to get
preliminary results that confirm the viability of the approach:

1) We manually selected three QDs to be near the center of
gravity of the network and made the assumption that all
mobile nodes (MNs) know about it.

2) The nodes that requested queries were selected randomly
and uniformly. This directly implies that the CNs were

uniformly distributed throughout the network.
3) No replacement algorithm was implemented to update

the contents of the CNs as their storage capacity was assumed
unlimited.

4) The database server was implemented as a fixed node far
from the mobile nodes (node 25 in Fig. 6)

5) At this stage, the SM and the backup nodes (BSM and
BQDs) were not implemented.

6) The network comprises equally capable nodes.
7) It was assumed that the DB server is always accessible

by the network.
8) We simulated 40 total queries that represent all the

possible queries that the MNs could request

B. Simulation 1
It is intuitive to examine the time to answer the queries

using the proposed approach and compare it to the case of no
caching. We had all the 24 mobile nodes (QDs and CNs
included) submit queries randomly from the pool of 40
possible queries and then measured the time it took to get the
response back. The database response was simulated with a
packet that was processed by the database within a random
delay value that is uniformly distributed to simulate the
random nature of the response size. That is, the responses to
different queries have varying lengths, depending on the type
of the application. The delay value ranged between 10 and 40
milliseconds. The total number of queries that were submitted
by the MNs is 100 and the MNs that submitted them along
with their order were also randomized. The result of the
simulation is shown in Fig. 7. To understand the graphs in the
figure, we note that each value shown for the caching case
involves multiple values as follows:

In the case of misses, the value is the summation of:
• Time it took to route the request from the requesting node

(MN) to HQD.
• Depending on how full the QDs are, the request may be

handled by QD1, QD2, or QD3. By handling we mean

Fig. 6. Network Topology using NS-2 (after 329s).

0
20
40
60
80

100
120
140
160
180

0 10 20 30 40 50 60 70 80 90 100
Network Scenario

T
im

e
to

 g
et

 d
at

a

Directly from DB From the Cache

Fig. 7. Time consumed to get query responses.

checking for a match then routing it to one of the CNs.
The worst case corresponds to the cumulative times to
check and route the request from QD1, to QD2, to QD3,
and then to one of the latter’s CNs.

• Time it took the CN to send the request to the DB server.
• Time it takes the DB server to process the query, fetch the

response, and then send it to the requesting CN.
• Time for the CN to return the response to MN.

In the case of hits, the value is the summation of:

• Time it took to route the request from the requesting node
(MN) to the chosen QD.

• Depending on how full the QDs are, the request may be
handled by QD1, QD2, or QD3. By handling we mean
checking for a match then asking the CN that has the
response to send it to MN.

• Time it takes CN to send the response to MN

Before discussing the results in Fig. 7, we present Fig. 8,

which clearly shows the database accesses and the times it
took to get the responses back. The large bars correspond to
queries that were sent to the database for processing by a CN
that belongs to one of the QDs. Their number is 40, which is
the total number of possible queries used by the MNs. The
other small bars represent individual delays as indicated in the
figure’s legend. The figure is busy but it helps to note that the
bars are divided into groups of four individual bars, whose
cumulative values are depicted in the curve with square
symbols in Fig. 7.

Back to Fig. 7, the cache hits and misses are easily
identifiable from the associated curve. Misses are represented
by the top peaks while hits correspond to bottom peaks that
fall in the range of 20 to 40 milliseconds. The top peak values
vary depending mostly on delays incurred by query processing
on the database. The curve with the diamond symbols reflects
direct requests issued to the database (node 25 in Fig. 6). This
curve was generated by having each MN that sends a query to
a QD, also send a query to the database immediately after, and
then measuring the time it took to get the response.

We observe that initially most of the requests cause traffic
to the database and fill the QDs and CNs with queries and
responses, respectively. With more requests, increasingly
more queries result in hits. In the case of misses, the caching
approach results in longer delays before the MNs get their
data but in the case of hits, the MNs get much faster
responses. As is evident, the exact gains depend mainly on the
delays to reach the database and have it process the queries.
More importantly though, the entire MANET or parts of it
may become disconnected from the database, in which case
the cache will prove to being essential.

C. Simulation 2
For this simulation we studied how the cache size affects

the average hop count. By average hop count, we mean the
number of hops from the time when the request is issued until
the reply is received. Here, we varied the cache size of the
QDs between 2 and 15 queries and measured the hop counts
in ten different simulation runs and plotted their averages in
Fig. 9. For example, when the cache size was eleven, the
average hop count (over the 10 simulations) was between five
and six hops. As anticipated, the hop count decreases as we
increase the cache size per QD. In reality the cache size is
dependent on many factors, including the device model and its
available storage space. It should be noted that such results
can provide valuable information for the Service Manager to
take into consideration when electing QDs.

D. Simulation 3

In this simulation, we measured the average hop count for
the two cases: with caching and without caching. As shown in
Fig. 10 below, comparable results for both cases were
obtained, which implies that no major losses were incurred in
the case of the proposed caching approach.

V. CONCLUSION AND FUTURE WORK
We presented an architecture for database caching in

mobile ad hoc networks and simulated the architecture using
the NS-2 tool. Our preliminary results proved effectiveness of

0.0

20.0

40.0

60.0

80.0

100.0

1 10 19 28 37 46 55 64 73 82 91 100

Network Status Scenario

T
im

e
(in

 m
s)

MN to QD QD to CN CN to DB back to CN CN to MN

Fig. 8. Hop Count vs. Number of requests.

Figure 9. Hop Count vs. cache size per

0

2

4

6

8

10

12

14

0 5 10 15
Cache size per QD

A
ve

ra
ge

 H
op

 C
ou

nt

Fig. 9. Hop Count vs. cache size per QD.

the architecture especially in the case where the nodes have
moved away from the database server. The results also show
an improvement in response time when compared to no
caching. We note that this work is part of ongoing research
the will study the different aspects of the proposed model and
compare to other architectures that were proposed for
MANETs.

ACKNOWLEDGMENT
We would like to acknowledge the work of the following
students on programming the simulations and acquiring the
data: Ibrahim Abdel Nabi, Mark Akl, Fahim Al Halabi, Sami
El-Arayssi, Gabriel Habre, Ahmad Husseini, Majdi Kiwan,
Anis Nazer, Hamza Nizameddine, Ayman Tajeddine, and
Rami Zakhour.

REFERENCES
[1] J. Schiller, Mobile Communications,2/E, Addison Wesley, ISBN:0-321-

12381-6
[2] C. E. Perkins, E. M. Royer, and S. R. Das, “Ad Hoc On Demand

Distance Vector (AODV) Routing,” Internet Draft. Mobile Ad Hoc
Networking Group. 14 July 2000.

[3] Cao, L. Yin, and C.R. Das “Cooperative cache-based data access in ad
hoc networks”, IEEE Computer, vol. 37, no. 2, 2004, pp 32 – 39.

[4] Y. C. Tseng, S.Y. Ni, and E. Y. Shih “Adaptive approaches to relieving
broadcast storms in a wireless multihop mobile ad hoc network,” IEEE
Transactions on computers, vol 52, no. 5, 2003.

[5] T. Hara, “Replica allocation methods in ad hoc networks with data
update,” Mobile Networks and Applications, vol. 8, Issue 4, 2003.

[6] T. Hara, “Effective Replica allocation in ad hoc networks for improving
data accessibility,” In proceedings of IEEE INFOCOM 2001, pp. 1568-
1576.

[7] B. y. Chan, A. Si, and H. V. Leong, H.V. “Cache management for
mobile databases: design and evaluation,” In the Proceedings of 14th
International Conference on Data Engineering, February 1998, pp. 54 –
63.

[8] R. Friedman, “Caching web services in mobile ad-hoc networks:
opportunities and challenges,” Proceedings of the second ACM
international workshop on Principles of mobile computing, Toulouse,
France, 2002, pp. 90 – 96.

[9] R. Friedman, “Locating cache proxies in manets,” Proceedings of the 5th
ACM international symposium on Mobile ad hoc networking and
computing., May 2004.

[10] Barbará and T. Imieliński, “Sleepers and workaholics: caching strategies
in mobile environments,” Proceedings of the 1994 ACM SIGMOD
international conference on Management of data, vol. 23, issue 2, 1994,
pp. 1-12.

[11] Chi-Hung Chi, and Lau S.L., “Data Prefetching with Co-operative
Caching,” 5th International Conference on High Performance
Computing, HIPC '98, 1998, pp. 25 – 32.

[12] Valera, W.K.G Seah, S.V. Rao, “Cooperative Packet Caching and
Shortest Multipath Routing in Mobile Ad Hoc Networks,” Twenty-
Second Annual Joint Conference of the IEEE Computer and
Communications Societies, IEEE INFOCOM 2003, vol. 1, March 30th
to April 3rd 2003. pp. 260 - 269

[13] G. Cao, “A Scalable Low-Latency Cache Invalidation Strategy for
Mobile Environments,” IEEE Trans. Knowledge and Data Eng., vol. 15,
2003, pp. 1251-1265

[14] G. Cao, “Proactive power-aware cache management for mobile
computing systems,” IEEE Transactions on computers, Vol. 51, no. 6 ,
2002, pp. 608 – 621.

[15] X. K. Shao and Y. S. Lu, “Maintain Cache Consistency of Mobile
Database Using Dynamical Periodical Broadcast Strategy,” In the
Proceedings of the Second International Conference on Machine
Learning and Cybernetics, Xi’an, November 2003.

[16] NS-2 simulator. http://www.insi.edu/nsnam/ns/ [April 2002].
[17] Christian Bettstetter, Giovanni Resta, and Paolo Santi, “The node

distribution of the random waypoint mobility model for wireless ad hoc
networks,” IEEE Transactions on Mobile Computing, vol. 2, no. 3, pp.
257-269, July-September 2003.

0
2
4
6
8

10
12
14
16

0 50 100 150 200
Number of requests

A
ve

ra
ge

 H
op

 C
ou

nt

No Caching Caching

Fig. 10. Hop Count vs. Number of requests.

	page_1: - 238 -
	page_2: - 239 -
	page_3: - 240 -
	page_4: - 241 -
	page_5: - 242 -
	page_6: - 243 -
	page_7: - 244 -

