
  
Abstract—This paper proposes a model for caching database 

data in mobile ad-hoc networks through caching the queries and 
their responses. The approach makes a distinction between the 
queries and their responses and caches them on separate mobile 
nodes. This method is driven by the fact that queries do not 
become invalid unless when the design of the database entities 
changes while data changes depending on the application that 
feeds information into the database. The architecture we use is 
hierarchical and employs three types of designated nodes: a 
Query Directory (QD), Service Manager (SM), and Caching 
Node (CN). The one or more QDs are responsible for caching the 
queries and are assigned and supervised by the SM that also 
oversees the mobility activities and the availability of nodes in the 
network and makes “managerial” decisions accordingly, 
including appointing backup nodes. With this model, any node 
that joins the ad hoc network will either contribute services to 
other nodes (willingness to become an SM, a QD, or a CN) or 
consume services offered by other nodes.  This model attempts to 
coordinate the query executing and query caching mechanisms in 
a seamless manner while maintaining minimal communication 
among nodes. We present preliminary results of a model that was 
simulated using the NS-2 software and show the viability of the 
proposed approach. 
 

Index Terms—Ad Hoc Networks, Database Caching, Mobile 
networks, MANETs. 

I. INTRODUCTION 
OBILE ad hoc networks (MANETs) are making the focus 
of current research. In this type of networks, each 

mobile node’s transmitter has a limited range and mobile 
nodes communicate using multi-hop wireless links as shown 
in Fig. 1. Nodes are capable of moving actively and can be 
connected dynamically as each node can act as a router [1]. 
Most previous researches have been focusing on the 
development of dynamic routing protocols that make efficient 
use of bandwidth and computational overhead [2].  Although 
routing is an important issue, the ultimate goal of a MANET is 
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to provide mobile nodes with access to services, but for any 
service to be successful it needs to be accessible from most 
mobile devices. 

In MANETs accessing services and data over the network 
can be very slow and hence, caching frequently accessed data 
is an effective technique for improving performance. While 
caching data on the device is useful for the device itself, this 
mechanism does not provide a consistent framework for 
allowing all other devices in the network to benefit from this 
data. Therefore, devising an effective caching strategy for the 
whole MANET is of special importance since it allows for 
improving the performance of the network as a whole. 

The objective of this paper is to propose a new model for 
caching database data in MANETs through caching the 
queries and their responses on separate nodes. This model 
attempts to allow the ad hoc network to function with minimal 
communications with the database so as to keep the network 
up and running even with database disconnections. 

 

II. RELATED WORK 
Many papers have proposed or dealt with models that 

involve caching or replication as a way to make services more 
accessible to mobile devices [3],[5]-[15]. 

A. Cooperative cache-based data access in ad hoc network 
A cache-based data access framework was proposed in [3], 

that describes how mobile nodes can work as request-
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Fig. 1.  Wireless nodes routing a request to the base station. 
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forwarding routers. Three different caching techniques were 
proposed: CachePath, CacheData, and HybridCache. 

In CachePath, a node need not record the path information 
of all passing data; rather, it only records the data path when it 
is closer to the caching node than the data source. An example 
is shown in Fig. 2. When node N11 forwards data di to the 
destination node N1 along the path N5 – N4 – N3, node N4 
and node N5 will not cache di’s path information because they 
are closer to the data source than the caching node N1. 

In CacheData, the router node caches the data instead of the 
path when it finds that the data is frequently accessed. In Fig. 
2, if both node N6 and node N7 request data di through node 
N5, the latter might think that di is popular and cache it 
locally. N5 can then serve N4’s future requests directly. 
However, if node N3 forwards several requests for di to node 
N11, the nodes along the path—N3, N4, and N5— might want 
to cache di as a frequently accessed item. Consequently, 
they’ll waste a large amount of cache space if they all cache 
di. To avoid this, a node does not cache the data if all requests 
for the data are from the same node. 

In HybridCache, a node caches the data or path based on 
parameters that include the data size and data time-to-live 
(TTL). If data size is small, CacheData is optimal because the 
data item di only needs a small part of the available cache. 
Otherwise, CachePath is preferred because it saves cache 
space. If TTL is small, then CacheData is preferable since di 
might soon become invalid. For a large TTL value, CachePath 
is acceptable. Caching a data path only requires a small 
overhead and hence, in HybridCache, when a node caches di 
using CacheData, it also caches di’s path. Later, if the cached 
di becomes invalid, the validation algorithm can remove di but 
keeps the path. 

With HybridCache, router nodes help other mobile nodes to 
get the requested data quickly. A mobile node doesn’t know 
whether the data source or some other nodes serve its request. 
If multiple data sources exist, or if the mobile node doesn’t 
know where the data source is, HybridCache might not be a 
good option. One possible solution may be the proactive 
cooperative caching, in which the requesting node actively 
searches for data from other nodes and the data search can go 
through multiple hops. Indeed, in proactive cooperative 
caching, the requesting node broadcasts a request to its 

neighbor nodes. If a node receiving the request has the data in 
its local cache, it sends an acknowledgment (ACK) to the 
requesting node; otherwise, it forwards the request to its 
neighbors. In this way, a request is flooded to other nodes and 
eventually acknowledged by the data source or a node with 
the cached copy. Flooding can create problems such as 
redundancy, contention, and collision—collectively referred 
to as the broadcast storm problem [4].  

B. Replica allocation methods in ad hoc network  
Three replica allocation methods for improving data 

accessibility in ad hoc networks were proposed in [5] and [6].  
They all assume that each mobile host creates replicas of the 
data items, and maintains the replicas in its memory space. 
When a mobile host issues an access request for a data item di, 
the request is successful in either case: 1) the requesting host 
itself holds the original/replica of di or, 2) at least one mobile 
host which is connected to the requesting host with a one-
hop/multi-hop link holds the original/replica. Thus, first, the 
requesting host checks whether it holds the original/replica of 
the target di. If it does, the request succeeds on the spot, 
otherwise it broadcasts the request for the target di. Then, if it 
receives a reply from another host which holds the 
original/replica of the target di, the request is also successful. 
Otherwise, the request fails. 

The three replica allocation methods differ in the emphasis 
put on access frequency and network topology. They are: 
Static Access Frequency method (SAF), Dynamic Access 
Frequency and Neighborhood method (DAFN), and Dynamic 
Connectivity based Grouping method (DCG). In the SAF 
method, only the access frequency to each data item is taken 
into account while in the DAFN method, the access frequency 
to each di and the neighborhood among mobile hosts are taken 
into account. In the DCG method, the access frequency to 
each data item and the whole network topology are taken into 
account i.e. stable groups of mobile hosts are created, and 
replicas are shared in each group. The technique in [5] 
assumes that data items are periodically updated, which is not 
the case of [6]. 

The replica allocation methods replicate the data item on 
the requesting node. Using SAF, the replication redundancy 
may become enormous if a considerable number of mobile 
nodes frequently access the same data. Using DAFN, the 
redundancy is eliminated among neighbors. However, this 
elimination is taking place after the occurrence of redundancy. 
Consequently, it will consume a considerable portion of the 
bandwidth.  

C. Cache management for mobile databases  
In [7] a mobile caching mechanism for a mobile 

environment is described. It investigates three levels of 
granularity of caching a database item namely, attribute 
caching, object caching, and hybrid caching. Intuitively, in 
attribute caching frequently accessed attributes of database 
objects are cached in a client’s local storage. In object 
caching, the objects themselves are cached. Finally, in hybrid 

 

 
Fig. 2.  An Ad Hoc network used to demonstrate the caching techniques. 



caching, only frequently accessed attributes of those 
frequently accessed database objects are cached. This ensures 
that the cached attributes of the cached objects will have a 
high likelihood to be accessed in the future. This mechanism 
was implemented using a cache table in each client, to identify 
if a database item (attribute or object) is cached in local 
storage. Also, if a client is connected to a server, the client is 
able to retrieve the cached items from the local storage and the 
un-cached items from the server. Otherwise the client retrieves 
only the cached items. The mechanism suffers from some 
drawbacks since it assumes that each mobile client only 
communicates with one server while in real applications 
mobile client might requests items from multiple servers. 

D. Caching web services with load balancing 
In [8] caching of web services is organized as a service 

itself. In order to reduce cellular communication, each cached 
service has a single proxy cache within each ad-hoc network 
in which it is being used. The node that caches the service is 
referred to as a local proxy. As stated in [9], the two main 
issues in any caching system are proxy placement and proxy 
lookup. The former deals with deciding which nodes should 
act as proxies for which services and the latter solves the issue 
of how to find a proxy and how to route to it. The assignment 
of proxies in the network is subject to fairness criteria that 
mostly concern distributing the load among the devices. When 
a device needs to access a service, it first tries to access the 
proxy it knows about from gossiping and then by referral. 

Choosing the right proxy can have a dramatic impact on the 
performance of the system. Proxies need to be updated 
continuously to make up for topological changes and 
partitioning and merges of the MANET caused by mobility. 

E. Other issues with caching 
Caching mechanisms in conventional client-server 

environments are usually page-based, primarily because the 
overhead for transmitting one item or a page is almost the 
same. Page-based caching mechanisms require a high degree 
of locality among the items within a page to be effective. In 
practice, database items requested by different mobile clients 
via dedicated channels are different. A physical organization 
that favors the locality exhibited by one client might result in 
poor locality for another. Database items within a page at a 
database server thus barely exhibit any degree of locality. 
Furthermore, mobile clients are powered by short-life batteries 
and caching a page will result in wasting energy when the 
degree of locality is low. The overhead of transmitting a page 
over a low bandwidth wireless channel would be too 
expensive to be justified. It is, therefore, necessary to consider 
caching at a smaller granularity in this context. 

III. PROPOSED ARCHITECTURE 
Our aim is to increase the ability of mobile devices to have 

access to database data given their highly dynamic 
characteristics, such as mobility, power limitations, and 
intermittent availability. Our proposal calls for building a 

hierarchical architecture for handling the distribution of data, 
for providing services to the requesting nodes, and for 
managing the roles of the nodes. 

Database access is normally handled using Structured 
Query Language (SQL) and as such, we can either cache the 
sent SQL queries (or statements) along with the corresponding 
return data, or replicate the database data among the mobile 
nodes. With the latter approach however, the job of 
interpreting and processing SQL would have to be delegated 
to one or more nodes, which may be taxing especially if we 
need to implement the full capability of a database server. 
Even if one resorts to a light version, replicating the raw data 
among the mobile nodes brings with it a lot of issues. Among 
those is the fact that in order to answer certain queries, data 
may need to be collected across nodes, which could add 
delays and consume additional power. Further, certain 
strategies would have to be adopted for deciding how to break 
the data among the nodes in order to increase the probability 
of answering most queries by contacting a single node. 

A. Components of the Architecture 
We base our caching model on caching the SQL statements 

that correspond to queries and their return data. In effect, our 
proposed architecture makes query discovery the underlying 
service that enables access to cached database data. The 
entities in the architecture are the Service Manager (SM) and 
its backup (BSM), the Query Directories (QDs) and their 
respective backups (BQDs), and the mobile nodes that cache 
the query responses, which we refer to as the Caching Nodes 
(CNs). The CNs only store the query responses, i.e., the 
database data, and associate them with the queries that caused 
them to be returned by the database server. Similarly, the QDs 
store the queries without the data and also associate these 
queries with the CNs that hold the corresponding data. 
Finally, the SM keeps track of which nodes have the role of 
Query Directories and backup Query Directories and makes 
assignments and reassignments based on availability and 
fairness criteria. 

The SM is elected based on capabilities, availability and 
other factors whenever the network is formed or when its 
structure changes. The SM elects a backup SM (BSM), with 
which it will synchronize every interval of time. Upon 
demand, the SM will assign the QDs and CNs, and directly 
assigns the BQDs. First, the SM starts with assigning the first 
QD, which caches the queries and maintains corresponding 
pointers to the nodes that submitted these queries. These 
nodes become the CNs while the pointers form entries in hash 
tables that link the queries to the corresponding CNs. Each 
QD will synchronize its entries (cached queries and hash table 
entries) with its BQD every specified time interval. 

To provide an overview of the roles of the basic 
components of the architecture, we provide a physical view of 
the architecture in Fig. 3 and a conceptual view in Fig. 4. 
 
 
 



B. Query and Result Caching Strategy 
Caching data (numerical, textual, or mixed data) on the 

Caching Nodes requires the reservation of storage space, 
which is limited on mobile devices and hence, we need to 
make every attempt to save space and be able to increase the 
collective amount of cached data in the network. Many 
strategies have been discussed in the literature that we can 
benefit from. This includes duplication management 
techniques (also related to node clustering) and compression 
algorithms. 

Caching the queries themselves in the Query Directories 
requires special attention as these can be lengthy and storing 
them as normal text is costly. Instead we devise a simple 
algorithm that builds on the limited set of SQL keywords and 
on the usually small number of database tables and associated 
fields (columns). Actually, the only SQL statement that 
concerns us is SELECT because the others deal with data 
modification. Although this is relevant, we elect to treat this 
subject in another paper and focus instead on the design of the 
proposed architecture and on studying its performance. 

C. Updating the Mobile Network 
The Service Manager (SM) keeps track of QDs through 

periodic multicasts that it issues to the QDs, which it knows 
about (since it assigned them these roles). Information about 
the available QD nodes is then broadcasted across the mobile 
network so all mobile nodes know the number of QDs and 
where to send their queries to get the data (if such queries are 
cached). Forwarding pointers can be used to link QDs.  

When submitting a query, the requesting Mobile Node 
(MN) will generate a random integer number between 1 and 
the number of QDs and then send its query to the 
corresponding QD in the list of QDs. If this QD is far, i.e. not 
in a one hop range, the query will be routed to it using the Ad 
hoc On-Demand Distance Vector Routing (AODV), used in 
mobile Ad hoc networks. 

If the requested query is not available in the chosen QD, the 
latter will send the query with the MN’s identifier (IP for 
example) to the next QD in the list. Also, if the query was not 
available, this next QD will send the query with the MN’s 
identifier to the following QD, so on until the last QD in the 
circular list is reached. If the query was found on a QD, the 
latter will check its hashing table to know which CN holds the 
output of this query. Knowing the requester MN’s identifier, 
the CN will send the previously cached data to the requester. 

To cover for the case where no QD exists that holds the 
query (equivalent to saying that the sought data is not cached), 
the non-full QD in the list will save this query and send it to 
the database to get the results. As implied from above, each 
requesting node becomes a CN once it obtains the results of 
its query and will thus participate in providing caching 
services to the network. If its designated storage space ever 
becomes full of cached results, it may use one of the 
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replacement algorithms (e.g., least recently used or least 
frequently used) to store the new result at the expense of an 
old one. This however necessitates informing the QD that 
holds the corresponding query to invalidate this query, hence 
the need for a hash table on each CN to link to the 
corresponding QDs. When serving other nodes, the CN 
forwards the data item to the requester using its identifier that 
it retrieves from the request packet it gets from the QD. 

Initially, the system starts with a single QD that caches 
queries. When this QD is filled beyond a given threshold, it 
informs the SM, which will assign an additional QD. When 
this new QD becomes filled, another node will join the list of 
QDs that are linked in a circular manner (see Fig. 5). The 
number of QDs will increase until some kind of steady state 
level is reached (i.e., increasingly less queries are not found in 
the cache). As implied, at any point in time, there is one QD 
that is available to cache non-cached queries and we refer to it 
as the non-full QD (NF-QD). If the submitted query was not 
found in the QDs, it is the NF-QD that goes to the database to 
fetch the results, adds the query to its local cache, updates its 
hash table, and forwards the result to the requesting node. 

 
Note that with the above strategy, the Service Manager does 

not have to issue new updates to the network. That is, the 
nodes in the network do not need to be updated whenever the 
cache of the NF-QD is updated because they follow a chain of 
pointers between the QDs during the search procedure. When 
no QDs are known to hold the query, the last QD in the 
circular list informs the NF-QD about the need to cache this 
query and submit it to the database in order to obtain the 
results. A requesting mobile node will send its query to the 
one of the QDs, chosen randomly for the purpose of 
distributing the load among the QDs. If this QD has the query 
cached, it fetches the results from the corresponding CN and 
return them to the node. Otherwise it forwards the query to the 
next QD in the chain (the NF-QD could be anywhere in this 
chain). If the last QD in the chain is reached and the query is 
not cached, the last QD informs the NF-QD, which in turns 
gets the data from the database and updates its cache and hash 
table, and sends the results to the requesting node (as 
explained above). 

As mentioned above, certain cached query responses may 
be replaced by new ones in the CNs, thus causing the 
corresponding queries to become invalid and consequently 
creating free space in possibly filled QDs. For simplicity 

however and because this situation is not expected to occur 
frequently (i.e., CNs becoming filled with cached responses), 
we do not take advantage of this freed space and instead keep 
on using the NF-QD to cache non-cached queries. Unlike this 
scenario, when updated data in the database causes cached 
responses in the CNs to become invalid, the cached queries in 
the QDs do not get affected. 

D. Backups 
Since the content of the QDs does not change under normal 

conditions, it would not be a burden bandwidth-wise to 
institute a cache replication strategy for the QDs. For each 
QD, we propose that the first faraway node (>H hops) making 
a request to use this QD is chosen as its BQD (a node can be 
both a CN and QD). We chose a faraway node to act as a 
backup node for the mere observation that if a node went 
down because of signal loss, a close node will likely 
experience the same problem and a faraway node will be a 
better choice to act as backup with a less probability to go 
offline simultaneously. 

As previously mentioned, the QDs will synchronize with 
their backup nodes every specified amount of time. When a 
node, with a specified function, for example a QD, goes 
offline, its respective backup (the BQD) will take charge and 
become an active node (the QD). Then it will ask the SM to 
assign a backup node for it (a BQD), to maintain the 
redundancy and to protect against data loss. 

E. Consistency of Query Responses 
While the content of the cache in the QDs is not expected to 

change considerably within a given period of time, the data 
cached in the CNs may change depending on the nature of the 
data in the database and the underlying application. Dealing 
with issues related to cache data consistency is not new and 
has been discussed extensively in the literature (known as 
cache validation). For the proposed architecture, keeping the 
query responses consistent with the database is challenging 
due to their association with queries. We will not discuss this 
topic any further as it is the subject of another paper. 

IV. SIMULATIONS AND RESULTS 
To simulate the proposed architecture, we used the NS-2 

software, which is a network simulator that is widely used for 
research [16]. It simulates various IP networks and 
implements many network protocols such as TCP, UDP, and 
FTP. It also implements multicasting and some MAC layer 
protocols to simulate LANs and can be used to simulate large 
networks. An important feature in NS-2 is the wireless model, 
which simplifies the simulation process for the proposed 
architecture. The simulations were built using Tcl scripts and 
C++ programs while the results that we present below were 
obtained from the log-trace files that the simulator generates.  
In this section, we will show the simulation results of our 
architecture and compare the results to no caching where all 
the queries are sent to the database. 
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A. Simulation Setup 
For the simulations, we chose an 800m×800m terrain and 

placed in it twenty five nodes that use the AODV routing 
protocol. The nodes issue random requests at intervals of 2 
seconds over a period of 1000 seconds. As for mobility, we 
used CMU’s node movement generator setdest to create 
random waypoint [17] node movements for the 25 mobile 
nodes. The Random Waypoint model is mainly used for ad-
hoc network simulation. Fig. 6 shows the locations of the 
nodes at a particular instant of time. 

 

For the simulations, we made some simplifications to get 
preliminary results that confirm the viability of the approach: 

1) We manually selected three QDs to be near the center of 
gravity of the network and made the assumption that all 
mobile nodes (MNs) know about it. 

2) The nodes that requested queries were selected randomly 
and uniformly. This directly implies that the CNs were 

uniformly distributed throughout the network. 
3) No replacement algorithm was implemented to update 

the contents of the CNs as their storage capacity was assumed 
unlimited. 

4) The database server was implemented as a fixed node far 
from the mobile nodes (node 25 in Fig. 6) 

5) At this stage, the SM and the backup nodes (BSM and 
BQDs) were not implemented. 

6) The network comprises equally capable nodes. 
7) It was assumed that the DB server is always accessible 

by the network. 
8) We simulated 40 total queries that represent all the 

possible queries that the MNs could request 

B. Simulation 1 
It is intuitive to examine the time to answer the queries 

using the proposed approach and compare it to the case of no 
caching. We had all the 24 mobile nodes (QDs and CNs 
included) submit queries randomly from the pool of 40 
possible queries and then measured the time it took to get the 
response back. The database response was simulated with a 
packet that was processed by the database within a random 
delay value that is uniformly distributed to simulate the 
random nature of the response size. That is, the responses to 
different queries have varying lengths, depending on the type 
of the application. The delay value ranged between 10 and 40 
milliseconds. The total number of queries that were submitted 
by the MNs is 100 and the MNs that submitted them along 
with their order were also randomized. The result of the 
simulation is shown in Fig. 7. To understand the graphs in the 
figure, we note that each value shown for the caching case 
involves multiple values as follows: 

In the case of misses, the value is the summation of: 
• Time it took to route the request from the requesting node 

(MN) to HQD. 
• Depending on how full the QDs are, the request may be 

handled by QD1, QD2, or QD3. By handling we mean 

 
Fig. 6.  Network Topology using NS-2 (after 329s). 
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Fig. 7.  Time consumed to get query responses. 



checking for a match then routing it to one of the CNs. 
The worst case corresponds to the cumulative times to 
check and route the request from QD1, to QD2, to QD3, 
and then to one of the latter’s CNs. 

• Time it took the CN to send the request to the DB server. 
• Time it takes the DB server to process the query, fetch the 

response, and then send it to the requesting CN. 
• Time for the CN to return the response to MN. 

 
In the case of hits, the value is the summation of: 

• Time it took to route the request from the requesting node 
(MN) to the chosen QD. 

• Depending on how full the QDs are, the request may be 
handled by QD1, QD2, or QD3. By handling we mean 
checking for a match then asking the CN that has the 
response to send it to MN. 

• Time it takes CN to send the response to MN 
 
Before discussing the results in Fig. 7, we present Fig. 8, 

which clearly shows the database accesses and the times it 
took to get the responses back. The large bars correspond to 
queries that were sent to the database for processing by a CN 
that belongs to one of the QDs. Their number is 40, which is 
the total number of possible queries used by the MNs. The 
other small bars represent individual delays as indicated in the 
figure’s legend. The figure is busy but it helps to note that the 
bars are divided into groups of four individual bars, whose 
cumulative values are depicted in the curve with square 
symbols in Fig. 7. 

Back to Fig. 7, the cache hits and misses are easily 
identifiable from the associated curve. Misses are represented 
by the top peaks while hits correspond to bottom peaks that 
fall in the range of 20 to 40 milliseconds. The top peak values 
vary depending mostly on delays incurred by query processing 
on the database. The curve with the diamond symbols reflects 
direct requests issued to the database (node 25 in Fig. 6). This 
curve was generated by having each MN that sends a query to 
a QD, also send a query to the database immediately after, and 
then measuring the time it took to get the response. 

We observe that initially most of the requests cause traffic 
to the database and fill the QDs and CNs with queries and 
responses, respectively. With more requests, increasingly 
more queries result in hits. In the case of misses, the caching 
approach results in longer delays before the MNs get their 
data but in the case of hits, the MNs get much faster 
responses. As is evident, the exact gains depend mainly on the 
delays to reach the database and have it process the queries. 
More importantly though, the entire MANET or parts of it 
may become disconnected from the database, in which case 
the cache will prove to being essential. 

C. Simulation 2 
For this simulation we studied how the cache size affects 

the average hop count. By average hop count, we mean the 
number of hops from the time when the request is issued until 
the reply is received. Here, we varied the cache size of the 
QDs between 2 and 15 queries and measured the hop counts 
in ten different simulation runs and plotted their averages in 
Fig. 9. For example, when the cache size was eleven, the 
average hop count (over the 10 simulations) was between five 
and six hops. As anticipated, the hop count decreases as we 
increase the cache size per QD. In reality the cache size is 
dependent on many factors, including the device model and its 
available storage space. It should be noted that such results 
can provide valuable information for the Service Manager to 
take into consideration when electing QDs. 

 
D.   Simulation 3 

In this simulation, we measured the average hop count for 
the two cases: with caching and without caching. As shown in 
Fig. 10 below, comparable results for both cases were 
obtained, which implies that no major losses were incurred in 
the case of the proposed caching approach. 

 

V. CONCLUSION AND FUTURE WORK 
We presented an architecture for database caching in 

mobile ad hoc networks and simulated the architecture using 
the NS-2 tool. Our preliminary results proved effectiveness of 
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Fig. 8.  Hop Count vs. Number of requests. 
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Fig. 9.  Hop Count vs. cache size per QD. 



the architecture especially in the case where the nodes have 
moved away from the database server. The results also show 
an improvement in response time when compared to no 
caching. We note that this work is part of ongoing research 
the will study the different aspects of the proposed model and 
compare to other architectures that were proposed for 
MANETs. 

 

ACKNOWLEDGMENT 
We would like to acknowledge the work of the following 
students on programming the simulations and acquiring the 
data: Ibrahim Abdel Nabi, Mark Akl, Fahim Al Halabi, Sami 
El-Arayssi, Gabriel Habre, Ahmad Husseini, Majdi Kiwan,  
Anis Nazer, Hamza Nizameddine, Ayman Tajeddine, and 
Rami Zakhour. 

 
 

REFERENCES 
[1] J. Schiller, Mobile Communications,2/E, Addison Wesley, ISBN:0-321-

12381-6 
[2] C. E. Perkins, E. M. Royer, and S. R. Das, “Ad Hoc On Demand 

Distance Vector (AODV) Routing,” Internet Draft.  Mobile Ad Hoc 
Networking Group.  14 July 2000. 

[3] Cao, L. Yin, and C.R. Das “Cooperative cache-based data access in ad 
hoc networks”, IEEE Computer, vol. 37, no. 2, 2004, pp 32 – 39. 

[4] Y. C. Tseng,  S.Y. Ni, and  E. Y. Shih “Adaptive approaches to relieving 
broadcast storms in a wireless multihop mobile ad hoc network,” IEEE 
Transactions on computers, vol 52, no. 5, 2003. 

[5] T. Hara,  “Replica allocation methods in ad hoc networks with data 
update,” Mobile Networks and Applications, vol. 8,  Issue 4, 2003. 

[6] T. Hara,  “Effective Replica allocation in ad hoc networks for improving 
data accessibility,” In proceedings of IEEE INFOCOM 2001, pp. 1568-
1576. 

[7] B. y. Chan, A. Si, and H. V. Leong, H.V. “Cache management for 
mobile databases: design and evaluation,”  In the Proceedings of 14th 
International Conference on Data Engineering, February 1998, pp. 54 – 
63.  

[8] R. Friedman, “Caching web services in mobile ad-hoc networks:    
opportunities and challenges,” Proceedings of the second ACM 
international workshop on Principles of mobile computing, Toulouse, 
France, 2002, pp. 90 – 96.  

[9] R. Friedman, “Locating cache proxies in manets,” Proceedings of the 5th 
ACM international symposium on Mobile ad hoc networking and 
computing., May 2004. 

[10] Barbará and T. Imieliński, “Sleepers and workaholics: caching strategies 
in mobile environments,” Proceedings of the 1994 ACM SIGMOD 
international conference on Management of data, vol. 23, issue 2, 1994, 
pp. 1-12. 

[11] Chi-Hung Chi, and Lau S.L., “Data Prefetching with Co-operative 
Caching,” 5th International Conference on High Performance 
Computing, HIPC '98, 1998, pp. 25 – 32.  

[12] Valera, W.K.G Seah, S.V. Rao, “Cooperative Packet Caching and 
Shortest Multipath Routing in Mobile Ad Hoc Networks,” Twenty-
Second Annual Joint Conference of the IEEE Computer and 
Communications Societies, IEEE INFOCOM 2003, vol. 1, March 30th 
to April 3rd 2003. pp. 260 - 269  

[13] G. Cao, “A Scalable Low-Latency Cache Invalidation Strategy for 
Mobile Environments,” IEEE Trans. Knowledge and Data Eng., vol. 15, 
2003, pp. 1251-1265 

[14] G. Cao, “Proactive power-aware cache management for mobile 
computing systems,” IEEE Transactions on computers, Vol. 51, no. 6 , 
2002, pp. 608 – 621. 

[15] X. K. Shao and Y. S. Lu, “Maintain Cache Consistency of Mobile 
Database Using Dynamical Periodical Broadcast Strategy,” In the 
Proceedings of the Second International Conference on Machine 
Learning and Cybernetics, Xi’an, November 2003. 

[16] NS-2 simulator. http://www.insi.edu/nsnam/ns/ [April 2002]. 
[17] Christian Bettstetter, Giovanni Resta, and Paolo Santi, “The node 

distribution of the random waypoint mobility model for wireless ad hoc 
networks,” IEEE Transactions on Mobile Computing, vol. 2, no. 3, pp. 
257-269, July-September 2003. 

 
 
 
 
 

 

0
2
4
6
8

10
12
14
16

0 50 100 150 200
Number of requests

A
ve

ra
ge

 H
op

 C
ou

nt

No Caching Caching

 
Fig. 10.  Hop Count vs. Number of requests. 
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